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The semi-empirical equation of state for the polymers polystyrene (PS), polyisobutylene (PIB) and 
polydimethyl siloxane (PDMS) and the simple liquids benzene, n-heptane, carbon tetrachloride and argon at 
a negligible external pressure has been determined using the experimental data of thermal pressure coefficient 
7v, molar volume V and thermal expansion coefficient %. The equation of state obtained in this work is 
expressed by P = (XPo/V){caexp(oto l l o ) T -  coexp(ao Xlo)}, where X = (V~ - V)/V and I v o=Svc X ~ o y d V ,  V c is 
the critical volume and ao, rio, ao, ca and Co are constants determined experimentally. We have obtained good 
agreement between the values of % and ~v calculated and observed, within 1-2 ~ over a wide temperature 
range. The semi-empirical equation of state in the critical region is expressed by V~-Voc(T~-T) °-33, 
P -  Pc oc(V~ - V) s-°, fiT 1 ~C (T~ -- T) l's3 and %- ~ oc (T~ - T) °'67 for ro = 2.0, which agrees semi-quantitatively 
with the experimental critical indices. 
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I N T R O D U C T I O N  

The equation of state for polymers and simple liquids is 
very important in characterizing volumetric properties of 
liquids over wide ranges of temperature and pressure. It is 
also useful in predicting the thermodynamic properties of 
liquid mixtures such as phase separation. Extensive 
studies on the equation of state have been made by 
Prigogine et al. ~ , Flory et al. 2, Simha et al. a and Patterson 
et al. 4 Flory et al. 2 have derived the reduced equation of 
state using the van der Waals model for the internal 
energy and the Tonks model for the entropy in the liquid 
state. In a previous work we examined Flory's equation of 
state and found that the van der Waals model and the 
Tonks model are useful only over a limited temperature 
range below the boiling point of the liquid s. Deviations of 
values of %, the thermal expansion coefficient, and ~v, the 
thermal pressure coefficient, calculated by the Flory 
theory from experimental values occur over temperatures 
higher than the boiling point of the liquid. However, it has 
been recognized that the main thermodynamic properties 
of polymer solutions and simple liquid mixtures are 
explained through differences in % and 7~ between the 
components in solution, which can be evaluated by the 
reduced equation of state of Flory et al. 6 

On the other hand, extensive investigations of the 
equation of state in the critical region have been made. In 
1945 Guggenheim proposed a well-known empirical 
equation 7 : 

(Pl-Pg)/Pc = (7/2)(1 -- T/Tc)'/3 (1) 

where p~ is the density of the liquid, pg the density of the 
gas, Pc the critical density and T~ the critical temperature. 
It is also found that the index of equation (1) 

corresponding to the van der Waals equation is ½, which is 
not consistent with the experimental value. The scaling 
law and the renormalization group method have drawn 
much attention and played an important role in our 
understanding of the critical phenomena s- 12. 

In this work we have tried to derive a semi-empirical 
equation of state for polymers and simple liquids which 
allows quantitative prediction of experimental data for % 
and 7v over the wide temperature range in the non-critical 
region and the experimental critical indices in the critical 
region. We selected three polymers, polystyrene, 
polyisobutylene and polydimethyl siloxane, and four 
simple liquids, benzene, n-heptane, carbon tetrachloride 
and argon, for which experimental data over a wide 
temperature range are available. 

SEMIEMPIRICAL EQUATION OF STATE IN 
NON-CRITICAL REGION 

The equation of state is expressed using the 
thermodynamic equation of state 

(OE/t~ V)T = 7,,T - P (2) 
and therefore 

P = 7vT - (QE/O V)T (3) 

The equation of state can be determined if the functions 
7vT - P and 7~ are determined. The internal energy E(ET)  
and entropy S(V,T)  are related to 7 ~ T - P  and Yv through 
the following equations based on thermodynamics13: 

T V 

E(v,r)=E(o.o)+ f c dr+ f ( E/ V)TdV (4) 
0 V(0,0)  
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and 
T V 

f 
0 V(O,O) 

7odV (5) 

where E(0,0) is a value at T =  0 and V= V(0,0); V(0,0) a 
value extrapolated to T = 0  and P = 0 ;  S(0,0) a value at 
T = 0  and V= V(0,0); Co the heat capacity at constant 
volume and 7~ the thermal pressure coefficient. The 
equation of state is related to E(V,T) and S(V,T) through 
(OE/OV)T and 7~, not to Co and CdT, in equations (4) and 
(5) if C~ is a function of temperature only. In this 
calculation we have used two assumptions. One is that 
E(ET) and S(V,T) are expressed by a summation of 
functions of temperature and volume, which means that 
E(V,T)=E(V)+E(T) and S(V,T)=S(V)+S(T). The 
other is that E(V) and S(V) are expressed by 
homogeneous functions of V/(V~-V). The variable 
V/(V~- V) is ~seful in predicting a divergence o f%  and fiT 
at the critical point because it also diverges at the critical 
point. The expressions for E(V,T) and S(V,T) in this work 
are given by 

and 

E(V,T)=E(T)+ao(ToT-P)V{V/(V~- v)}bo (6) 

S(V,T) = S( T) + aoy ~ V{ V/( V~ - V)} ¢° (7) 

where V~ is the critical volume, ao, bo, So and flo are 
constants, E(T) and S(T) are temperature-dependent 
terms in E(V,T) and S(V,T), respectively, and the 
dimensions of energy and entropy are taken into account 
in the equations. Although both E(ET) and S(V,T) seem 
to diverge to infinity at the limit of V= V~, the divergences 
are cancelled by functions of ?oT-P and y~, which 
approach zero at the critical point (see equations (15) and 
(16)). 

The function % T - P  is calculated using equations (2) 
and (6): 

7oT-P=ao{a(y,T-P)/aV}rV{V/(V~- V)} b° 

+ ao(~oT- n)[ { (bo + 1)V¢- V}/(V¢- V)]{ V/(V~- V)}bo 
(8) 

By dividing equation (8) by (7~T-P)aoV{V/(V~-V)} b°, 
which is non-zero, we obtain 

a o  l { (Vc  - V)/V}bo/V= {O(~vT-P)/~V}T/O, vT - P) 

+ { ( b 0 + l ) V  ~-V}/{V(V~- V)} (9) 

Then, integrating equation (9) with respect to volume at 
constant temperature, we obtain 

yoT-P=co[{(V ~- V)/V}b°/V]exp(aollbo) (10) 

where Ibo is defined by 

and Co is 

v 

Ibo = f {(V~- V)/V}b°/V dV 
v¢ 

(11) 

an integration constant and a function of 

temperature in general. However, we take Co to be 
constant in this work because 7~T-P is a function of 
volume only, because E(ET) = E(T) + E(V). The 
equation for 7v is derived using equation (7) and 
~= (aS/OV)T by a similar procedure to that for T o T - P ,  
and is given by 

?o=q[{(V~-  V)/V}Po/V]exp(ao'Iao ) (12) 

where lao is defined by 

V 

Iao = f {(V¢ - V)/V}ao/V dV 
v~ 

(13) 

and c 1 is a constant for the same reason as that for c o. The 
equation of state is derived from equations (3), (10) and 
(12) as 

P = ct [{(V~ - V)/V}ao/V]exp(% llao)T 

-Co[{(V~- V)/V}b°/V]exp(aoalbo) (14) 

The internal energy and entropy are given using 
equations (6), (7), (10) and (12) by 

and 

E( E T) = E( T) + Coaoexp(a o l l bo ) (15) 

S(V,T) = S(T) + Ca~oexp(a o 1I~o ) (16) 

It is obvious that neither E(V, T) nor S(V, T) diverges at 
the critical point if E(T) and S(T) do not diverge at the 
critical point. It is noteworthy that values of y o T - P ,  ~ 
and P calculated in this work are zero at V = V~ in the case 
of b o > 0  and f lo>0 (see equations (10), (12) and (14)), 
while the observed values of these quantities at V= V~ are 
not zero. The equation of state in the critical region is 
discussed below. 

SEMI-EMPIRICAL EQUATION OF STATE IN 
THE CRITICAL R E G I O N  

First we must solve the discrepancy at the critical point 
between the prediction of equation (14) and experimental 
results. It is useful to define the following quantities: 

and 

P=P-Pc  (17) 

~vT = 7.T-~.,¢T~ (18) 

Equation (3) is rewritten using equations (17) and (18) as 

P =  ~7o~- (37fl" - P) (19) 

If the expressions for E(V) and S(V) in equations (6) and 
(7) are redefined by 

and 

£( v)  = E( V ) -  (~o,°T~ - Po) V 

3 (V)=S(V) -~v ,oV 

(20) 

(21) 
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the following equations are derived: 

(OP./SV)r = %i"- P 

and 

(~g/~v),=%=v.-?..o 

(22) 

(23) 

Then we can obtain the same equations as those derived 
before, except for the definition of P, 7 ~ T - P  and 7~. 
Therefore, the discrepancy at the critical point mentioned 
before is resolved because P, ~ T - P  and ~ must be zero 
at the critical point due to their definitions (see equations 
(17) and (18)). 

EMPIRICAL DETERMINATION OF INDICES IN 
EQUATION (14) 

The thermal expansion coefficient ap calculated from 
equation (14) is given by 

(apT)- 1 =floV/(V~ _ V) + flo + 1 - ~o i V(Olt~o/dV)r 

- { bo V/(Vc - V) + bo + 1 - ao 1 V(63ibo/O V)T} 

x (1 - P/?~T) (24) 

For P ~7~T, (apT)- 1 in equation (24) is approximated by 

(apT)- 1 = ( /~0 - -  bo){ VJ(V~ - V)} - a o ' V(Olpo/(~ V)r 

+ ~10 1V(~3ibo/C~ V) T (25) 

Because (apT)- 1 - .0  in the limit V ~  V~, flo - bo in the first 
term on the right-hand side of equation (25) must be zero, 
and we obtain 

(apT)- l= {(V~- V)/V}#°(ao~ - a o  ~) (26) 

where the equation obtained from equation (11) 

(c3I~o/C9 V)T = (8Ibo/8 V)T 

= { ( v ~ -  v)/v}~o/v ~ 
v~ 

= { ( v ~ -  v ) / W o / v  

is used. Equation (26) is valid for both non-critical and 
critical regions because the difference between P and/~ 
does not affect equation (26). 

Using the relation flo=bo, we obtain expressions 
for 7 , , T - P  and ?~ as follows: 

? ~ T - P = c o [ { ( V c -  V)/V}#°/V]exp(aollo) (27) 

and 

7~=c1 [{(V~ - V)/V}~°/V]exp(aollo) (28) 

where I o is defined by 

V 

Io = f V)/V}tJ°/VdV (29) 

v~ 

Semi-empirical equation of state: S. Saeki et al. 

The equation of state for the non-critical and critical 
regions is 

P = cl [{ (Vcc - V)/V}ao/V]exp(ao ~Io)T 

- Co[{(V~- V)/V}ao/V]exp(ao 11o) (30) 

The integral in equation (29) has been evaluated using the 
approximation 

I o = K - 5oln{ (Vc - V)/V} (31) 

where K and 6 o are constants. In the approximation we 
intended to express 7 ~ T - P  and 7~ as functions of 
(V~ - V)/V. From equations (27) and (28), the functions of 
y v T - P  and 7~ are expressed using equation (31) by 

?~T-P=c*{(V~-  V)/V} ~° 6°a';X)/V (32) 

and 

7. =c*{(V~ - V)/V}(P°-6I'°b/V (33) 

where c'~=coexp(Kao 1) and c'~=qexp(Kao 1) are 
constants. It is interesting to express temperature T as a 
function of volume. From equations (32) and (33) and the 
approximation 

?vT-P=7~T(1-P/y , ,T)~y~ ,T  

we obtain 

T = (C~/C~){  V / ( ~  - -  V)} ~O{aOl --~01) (34) 

and therefore 

,:,,=cg{(v~- v)/v}(~o "o°~')/VT (35) 

Indices such as flo and 6oao ~ have been evaluated from 
equations (26) and (32) by a log-log plot: 

and 

ln(~pT)-l=floln X + l n ( a o l - a o  l) (36) 

ln (~T - P) - floln X + In V = In c* - 5oa o qn X (37) 

where X is defined by 

x = (v~- v ) / v  (38) 

For  polymers it is necessary to evaluate V~ in determining 
flo if equation (36) is used. We estimated rio first and then 
determined Vc for polymers as follows. Equation (36) is 
rewritten using the approximation V/V~ < 1 as 

ln(%T) -1 =floln V~-floln V+ln(ao I - a o  1) (39) 

Values of V~ for polymers are estimated using equation 
(36) and flo by trial and error. 

RESULTS 

Experimental data for ~n, ?v and V are available for the 
simple liquids benzene TM, n-heptane TM, carbon 
tetrachloride TM and argon TM and the polymers 
polystyrene 15, polyisobutylene 16 and polydimethyl 
siloxane 17. Data in the literature for %, 7v and V for the 
simple liquids are obtained at pressures higher than the 
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saturated vapour pressure. Therefore the pressure effect 
on the quantities must be taken into account when data 
for a temperature above the boiling point are used to 
determine indices such as flo. 

The plots for equations (36) and (37) are shown in 
Fioures 1-3, where linearity is observed over the wide 
range of X. The indices and constants obtained in this 
work are summarized in Table I. Numerical comparisons 
for ~oT - P ,  ),~ and (~pT)- 1 values calculated in this work 
and observed are given in Table 2, in which 7~T - P  and ~ 
are calculated using equations (32) and (35) and (apT)-1 
is calculated using equation (26). 

It is interesting to derive the critical indices from the 
equation of state obtained in this work. From equation 
(26) we obtain 

or  

V 

In T=(ao 1-~oI)  f x#°/v dV 
v¢ 

(40a) 

T=(co/cOexp{(ao I -~ol ) Io}  (40b) 

The expression for 7~ without using the approximation of 
equation (31) is derived from equation (30) as 

y~ = c 1 X t~° V- 1 exp(ao 110 ) (41) 

and therefore the isothermal compressibility fiT is given 
using fiT = ~p/~. by 

f i r= {1/cx(ao 1 - %  x)}(V/T)x=2a°exp(-aollo) (42) 

1,0 

7~= o.o 

= 

-1 .0  

-2 .0  -0.4 -0.2 o.o 0.2 0.4 0.8 
~n{(vo- v)/v} 

Figure 1 In(apT) -x versus ln{(Vc-V)/F } from equation (36) for 
benzene (A), n-heptane (0), carbon tetrachloride (Q) and argon (A) 

12.o 

~ l"°V , 
0.1 0.2 0.3 0.4 0.5 0.6 0.7 

In{(Vc- V)/V } 

Figure 2 ln[(TvT -P){(Vc- V)/V}-#oV] versus ln{(Vc- V)/V} from 
equation (37) for benzene (A), n-heptane (O), carbon tetrachloride (O) 
and argon (A) 

7 

_= 

1.5 

1.0 

0.5 

_  -290;- . 

I I I I 
11.3 11.4 11.5 

I.{Ivo- vl/v} 
Figure 3 ln(a_T) -1 versus ln{(Vc-V)/V} and ln[(yvT-P)x 
{(Vc- V)/V-#oV] versus ln{(Vc- V)/V} for polydimethyl siloxane 

The function of P along the critical isotherm is given using 
equation (42) by 

V 

P= -cl(ao 1-=o ' )T  f X2#°V- Zexp(aollo)dV (43) 

v¢ 

It is convenient to rewrite the above equations in the 
usual form using an approximation for Io: 

X 

Io = - f X#°/(1 + X) dX (44a) 

X 

- f AX" dX 
o 

(44b) 

= -A(n+ 1)- iX "+1 (44c) 

Equations (40b), (42) and (43) are expressed using 
equation (44c) by 

or  

T=(co/cl){1-A(a o ' -aox)x"+l / (n+ 1)) (45a) 

(T~ - T)/T~ ,.~ X (" + ') (45b) 

while the function of fir in the critical region is given by 

flr=(C,(ao ~ -Cto ' )}- ' (V/T)X-  2#°{ l + AX"+'/ao(n+ 1)} 

(46a) 

~ X -  2,o (46b) 

,,, {(T~ - T)/T~} { - 2#0/(, + z)} (46c) 
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Table 1 Indices and constants in equations (26) and (32) determined in this work 

Co" Vc 
flo 6oao 1 (bar cm 3 mol - 1) ao i __ 0~ O 1 (cm 3 mol - 1) 

Polystyrene 5.22 3.02 5.25 x 10 -6 5.43 x 10 -21 1.0 x 104~ 
Polyisobutylene 5.74 4.53 1.10 x 10 -2 3.83 x 10 -26 4.0 x 104" 
Polydimethyl siloxane 3.22 1.09 5.58 x 10 - s 3.20 x 10- ~ 6 10.0 x 104 ~ 
Benzene 2.60 1.60 1.80 x 10 s 0.549 255.3 
n-Heptane 2.66 1.60 1.90 x 105 0.472 430 
Carbon tetrachloride 2.80 1.85 1.84 × 105 0.497 276 
Argon 2.74 2.23 0.40 x 105 0.698 74.6 

Vc (cm 3 g t) 

Table 2 Comparison of (c%T) - I ,  y ~ T - P  and Y~ calculated in this work and observed values for polyisobutylene and n-heptane 

Polyisobutylene n-Heptane 

(~.T) 1 (yvT-P)  (10 3 bar) Yv (bar K -1) (~vT) -1 (TvT-P)  (10 3 bar) 7v (bar K 1) 
Temp. 
(°C) Obs. Calc. Obs. Calc. Obs. Calc. Obs. Calc. Obs. Calc. Obs. Calc. 

0 6.46 6.58 3.46 3.49 12.66 12.81 
20 
25 6.02 6.07 3.39 3.39 11.36 11.37 
40 
50 5.60 5.60 3.29 3.29 10.19 10.18 
60 
80 

100 4.85 4.77 3.07 3.09 8.23 8.28 
150 4.18 4.04 2.87 2.90 6.78 6.85 
200 
250 

3.025 3.011 2.73 2.78 10.0 10.2 
2.764 2.725 2.60 2.60 8.88 8.89 

2.48 2.46 2.44 2.44 7.80 7.80 

2.21 2.20 2.28 2.27 6.85 6.82 
1.95 1.96 2.12 2.10 5.99 5.97 
1.70 1.72 1.96 1.94 5.25 5.22 
1.14 1.16 1.51 1.51 3.57 3.59 
0.64 0.64 1.04 1.06 2.22 2.25 
0.159 0.156 0.50 0.47 1.0 0.902 

Table 3 Critical indices calculated in this work and observed 

Exponents 

Property Obs. Calc." 

E -  ~ as a function of To- T fl=0.32 +0.01 0.33 
-(OP/OV)r=(flrV) -1 as a function of T e -  T ? =  1.24_0.05 b 1.33 
I P -  Pcl as function of vc - v~ f = 4.8 + 0.2 5.0 

=Calculated using flo = 2.0, n = 2.0 and equations (45b), (46c) and (47c) 
by+ along critical isocore is assumed equal to Yi- through orthobaric 
states of homogeneous fluid (see ref. 14) 

The function P along the critical isotherm is given by 

v 

P= -cl(ao 1 -o% ')T f X 2 P ° V -  2{ 1 - A X  "+ 1/~o(n + 1)} dV 

Vc 

~ c l ( a o  1 - ~ o l ) T V c - I X  2p°+l 

,,.~ X(2flo +1 ) 

The function ctv is obtained from equation (26): 

O~v= T - l ( a o  1 --0~O 1 ) -  1 X  -rio 

{(T~ - T)/T~} {-P°/(" + ')} 

(47a) 

(47b) 

(47c) 

(48a) 

(48b) 

It is obvious that the critical indices are calculated from flo 
and n. For flo = 2.6, the integration of equation (44a) is 
approximated by n = 2  and A = 0 . 5 ,  which gives 
I o = - - s a / 6 .  It is also true that in the critical region I o is 

approximated to - X P ° + l / ( f l 0 + l )  in equation (44a) 
because X ~ 0. In this work we used n = 2.0 and r0 = 2.0 in 
calculating the critical indices which are listed in Table 3. 

It is suggested from this work that the semi-empirical 
equation of state based on equations (6) and (7) and 
equation (3) allows quantitative prediction of 
experimental data for % and 7v over a wide temperature 
range and semi-quantitative prediction of critical indices. 
It is also found that the index fi0 plays an important role 
in the equation of state. 
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